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Preface 

 There is a deep sense of pleasure to be experienced when the patterns and symmetry of 
nature are revealed. Physical chemistry provides the methods to discover and understand 
these patterns. We think that not only is it important to learn and apply physical chemistry 
to biological problems, it may even be fun. In this book, we have tried to capture some of 
the excitement of making new discoveries and f nding answers to fundamental questions. 

 This is not an encyclopedia of physical chemistry. Rather, we have written this text 
specif cally with the life-science student in mind. We present a streamlined treatment that 
covers the core aspects of biophysical chemistry (thermodynamics and kinetics as well as 
quantum mechanics, spectroscopy, and X-ray diffraction), which are of great importance 
to students of biology and biochemistry. Essentially all applications of the concepts are 
systems of interest to life-science students; nearly all the problems apply to life-science 
examples. 

 For the f fth edition, we have extensively revised and updated the treatment of 
biophysical chemistry, bringing in theoretical approaches earlier and also updating the 
text to current IUPAC conventions. We have added a new chapter on electrochemistry and 
expanded our treatment of single molecule methods, quantum mechanics, and magnetic 
resonance. 

  Chapter   1    introduces representative areas of active current research in biophysical 
chemistry and molecular biology: the human genome, the transfer of genetic information 
from DNA to RNA to protein, ion channels, and cell-to-cell communication. We encourage 
students to read the current literature to see how the vocabulary and concepts of physical 
chemistry are used in solving biological problems. 

  Chapters   2    through    4    cover the laws of thermodynamics and their applications to 
chemical reactions and physical processes. Essentially all of the examples and problems 
deal with biochemical and biological systems. For example, after def ning work as a 
force multiplied by the distance moved (the displacement), we discuss the experimental 
measurement of the work necessary to stretch a single DNA molecule from its random-
coiled form to an extended rod, introducing the intuitive and accessible concept of 
molecular force microscopy. We also include a new and more comprehensive treatment 
of heat capacities, beginning with the kinetic theory of gases, which is now treated much 
earlier in  chapter   2   , and moving systematically to a consideration of what affects the heat 
capacity of a protein. Molecular interpretations of energies and entropies are emphasized 
in each of  chapters   2    through    4   . We also introduce isothermal titration calorimetry in 
 chapter   3   . Despite this new content, the length of  chapters   2    through    4    as been reduced by 
over 30 pages, largely by eliminating redundant material. 

 In  chapter   5   , we show how the thermodynamic laws discussed in  chapters   2    through    4    
can be explained by a statistical treatment of molecular motion and interactions, and apply 
these statistical methods to the conformation of proteins and DNA and the binding of 
ligands. This section has been combined with the conceptually-related statistical treatment 
of Maxwell-Boltzmann gases and appears much earlier. In  chapter   6   , we immediately use 
these statistical insights to explain physical phenomena such as phase transitions, ligand 
binding, and surface and membrane effects. 

 In  chapter   7   , we present a new and integrated treatment of electrical and electron-
transfer phenomena in biophysics, starting with classical electrochemistry, and considering 
how the chemical processes of electron transfer are linked to the physical processes of ion 
translocation to explain most of biological energy transduction. 
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  Chapters   8    through    10    cover molecular motion and chemical kinetics.  Chapter   8    starts 
with a discussion of molecular collisions, random walks, and brownian motion. Fluorescence 
microscopic tracking of single protein molecules diffusing in membranes is shown to 
beautifully corroborate Einstein’s equation relating average distance traveled by a single 
molecule to its bulk diffusion coeff cient. Following this direct experimental demonstration 
of thermal motion of a molecule, we consider the bulk transport of molecules by diffusion, 
sedimentation, viscous f ow, and electrophoresis. The next two chapters deal with general 
chemical kinetics and enzyme kinetics, including single-molecule enzyme kinetics. 

 In the 5th edition, we ref ect the rapidly expanding importance of quantum mechanics 
and diverse powerful spectroscopies in understanding molecular biological phenomena 
by presenting these subjects in four more focused and augmented chapters.  Chapter   11   , 
“Molecular Structures and Interactions: Theory,” now focuses solely on the origins and key 
introductory results of quantum theory, including a review of the postulates.  Chapter   12   , 
“Molecular Structures and Interactions: Biomolecules,” presents molecular orbital theory, 
interactions, and an overview of computational methods applied to macromolecules. 
Similarly, the treatment of spectroscopy is now more focused in two separate chapters 
on optical ( chapter   13   ) and magnetic ( chapter   14   ) methods, respectively.  Chapter   13    
increases emphasis on absorption and f uorescence, and includes new material on protein 
IR spectroscopy.  Chapter   14    introduces the classical framework for NMR in more detail 
and covers new methods in multidimensional and diffusion NMR. 

  Chapter   15    discusses X-ray diffraction, electron microscopy, and scanning microscopies 
(such as atomic force microscopy), and emphasizes how structures are determined 
experimentally. We added a new section on crystal lattices and symmetry, and expanded 
the discussion of modern methods such as X-ray imaging and free-electron lasers. 

 A new appendix in the f fth edition is an accessible, self-contained, and pragmatic 
review of the mathematics expectations in this text. We hope the carefully def ned scope 
of the mathematics (a characteristic of previous editions) will be reassuring in preparing 
to study this text. 

 We are gratif ed by the number of faculty who have elected to use this book over 
the many years since it was f rst published. We are also grateful for the many students 
and faculty who have given us their thoughts and impressions. Such feedback has helped 
improve the book from edition to edition. We are particularly grateful to those of our 
colleagues who commented on the f fth edition: 

   Noah W. Allen,    III—University of North Carolina, Asheville  
     Jason Benedict—   University of Buffalo  
     Tim Keiderling—   University of Illinois, Chicago  
     Ruth Ann Murphy—   University of Mary Hardin Baylor  
     Tatyana Smirnova—   North Carolina State University  
     Keith J. Stine—   University of Missouri-St. Louis  
     Gianluigi Veglia—   University of Minnesota  
     Jeff Woodford—   Missouri Western State University  
     Danny Yeager—   Texas A&M University  
     Kazushige Yokoyama—   State University of New York, Geneseo  
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    Ignacio Tinoco, Jr.  

      Kenneth Sauer  
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      Joseph D. Puglisi  
      David Rovnyak  

      Gerard Harbison  
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 The major theme of this revision is to update and reorder a classic text to ref ect changes 
in scientif c knowledge and student learning styles, while retaining the time-tested 
central core. 

   •   Over 200 new and revised f gures to help students visualize and understand the 
concepts discussed within each chapter.  

  •   At least 20-25% new and revised end-of-chapter problems  
  •   New treatment of the most modern methods, including free-electron laser X-ray 

imaging, single-molecule microscopy, and isothermal titration calorimetry.  
  •   Quantum mechanics has been split into two chapters covering basic theory 

and molecular properties; spectroscopy likewise has been split into optical 
spectroscopy and NMR.  

  •   New chapter on electrical phenomena ( chapter   7   ), which integrates 
electrobiochemistry, redox biology, and electrophysiology in a single location  .

  •   New focus on single molecule microscopy, dynamics, spectroscopy, and kinetics  .
  •   New molecular based development of heat capacities from ideal gases to proteins, 

along with new sections on calorimetric measurements  .
  •   Better integration of statistical theories of molecular conformation and binding, 

which now appear earlier in the text and directly precede experimental treatment 
of phase transitions, binding, and membranes  .

  •   Addition of MasteringChemistry for Physical Chemistry. The 
MasteringChemistry  platform is the most widely used and effective online 
homework, tutorial, and assessment system for the sciences. It delivers self-paced 
tutorials that focus on your course objectives, provide individualized coaching, 
and respond to each student’s progress. The Mastering system helps instructors 
maximize class time with easy-to-assign, customizable, and automatically graded 
assessments that motivate students to learn outside of class and arrive prepared 
for lecture or lab.    

  Chapter-by-Chapter Changes  

 Chapter   1    
   •   new sections on neuroscience and on single-molecule methods  
  •   the Human Genome Initiative section was brought up to date    

 Chapter   2    
   •   new treatment of molecular-force microscopy  
  •   new development of the concept of the heat capacity at a molecular level, 

beginning with the kinetic theory of monatomic gases, and extending to proteins  
  •   new and clearer discussion of paths, states and phase transitions    

 Chapter   3    
   •   expanded introduction and illustrations of Carnot cycle and associated principles  
  •   the thermodynamic square helps students see thermodynamics holistically   

  New to This Edition 
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  Chapter   4    
   •   expanded introduction and illustrations of chemical potential  
  •   isothermal titration calorimetry is included to ref ect its broad importance in drug 

discovery and characterizing substrate interactions   

  Chapter   5    
   •   reorganized treatment of statistical thermodynamics, beginning with the Maxwell-

Boltzmann distribution of gases, and proceeding to statistics of discrete and 
quantized systems, helix-coil statistics of macromolecules, and ligand binding    

 Chapter   6    
   •   the Clapeyron equations for phase transitions are now developed from the visual 

concept of three-dimensional free energy surfaces   

  Chapter   7    
   •   brand new chapter on electrical phenomena in biophysics  
  •   begins with electrochemical cells and biophysical applications of the Nernst equation  
  •   moves on to transmembrane equilibria, the Donnan effect, ion pumps, and 

neuroelectrophysiology  
  •   ends with biological redox reactions and a full, up-to-date exploration of oxidative 

phosphorylation   

  Chapter   8    
   •   new treatment of molecular collisions and their effect on mean square 

displacements  
  •   new development of the diffusion equations in one, two and three dimensions 

using Einstein’s original arguments  
  •   new discussion of single molecule microscopic measurements of diffusion in two- 

and three-dimensions  
  •   new treatment of effect of shape on diffusion and sedimentation coeff cients  
  •   improved and rewritten section on analytical ultracentrifugation    

 Chapter   9    
   •   sections on differential and integrated rate equations rewritten and clarif ed  
  •   new section on single-molecule kinetics    

 Chapter   10    
   •   new discussion of Michaelis-Menten kinetics with an emphasis on direct least-

squares f tting of data, compared to older, statistically inferior linearization methods     

Chapter   11    
   •   now pedagogically focused solely on introducing quantum mechanical origins 

and key applications  
  •   stronger connection between classical and quantum mechanics is forged  
  •   postulates are now included which can help students build their understanding of 

the logical structure of quantum mechanics    



 Chapter   12    
   •   streamlined for focus solely on molecular orbitals, intermolecular and 

intramolecular interactions  
  •   focus on analyzing coeff cients in molecular orbital wavefunctions through 

introductory material and problem sets    

 Chapter   13    
   •   introducing optical principles of spectroscopy solely will help students and 

instructors better organize and build their approach to spectroscopy in biophysics;  
  •   focus on visualizing spectroscopic concepts such as waves, the transition dipole, 

and the Franck-Condon principle  
  •   protein infra-read spectroscopy gives valuable information on structure, 

complementary to circular dichroism   

  Chapter   14    
   •   introduces the vector model for pulsed magnetic resonance  
  •   characterizing molecular rotation and size via relaxation, connecting to  Stokes-

Einstein principles of  chapter   8     
  •   protein 3D-NMR methods and gradient diffusion methods for particle size and 

microscopy   

  Chapter   15    
   •   new and highly visual treatment of lattices and symmetry  
  •   new treatment of ‘frontier’ research techniques such as x-ray imaging using  

free-electron lasers   

New to this Edition | xix



xx

  About the Authors 

 Ignacio Tinoco was an undergraduate at the University of New Mexico, a graduate 
student at the University of Wisconsin, Madison, and a postdoctoral fellow at Yale. He 
then went to the University of California, Berkeley, where he has remained. His research 
interest has been on the structures of nucleic acids, particularly RNA. He was chairman 
of the Department of Energy committee that recommended in 1987 a major initiative to 
sequence the human genome. He is a member of the National Academy of Sciences and 
of the American Academy of Arts and Sciences. His present research is using single-
molecule methods to determine how the ribosome synthesizes proteins. 

 Kenneth Sauer grew up in Cleveland, Ohio, and received his A.B. in chemistry from 
Oberlin College. Following his Ph.D. studies in gas-phase physical chemistry at Harvard, he 
spent three years teaching at the American University of Beirut, Lebanon. A postdoctoral 
opportunity to learn from Melvin Calvin about photosynthesis in plants led him to the 
University of California, Berkeley, where he has been since 1960. Teaching general 
chemistry and biophysical chemistry in the Chemistry Department has complemented 
research in the Physical Biosciences Division of the Lawrence Berkeley National Lab 
involving spectroscopic studies of photosynthetic light reactions and their role in water 
oxidation. His other activities include reading, renaissance and baroque choral music, 
canoeing, and exploring the Sierra Nevada with his family and friends. 

 James C. Wang was on the faculty of the University of California, Berkeley, from 
1966 to 1977. He then joined the faculty of Harvard University, where he is presently 
Mallinckrodt Professor of Biochemistry and Molecular Biology. His research focuses 
on DNA and enzymes that act on DNA, especially a class of enzymes known as DNA 
topoisomerases. He has taught courses in biophysical chemistry and molecular biology 
and has published over 200 research articles. He is a member of Academia Sinica, the 
American Academy of Arts and Sciences, and the U.S. National Academy of Sciences. 

 Joseph Puglisi was born and raised in New Jersey. He received his B.A. in chemistry 
from The Johns Hopkins University in 1984 and his Ph.D. from the University of California, 
Berkeley, in 1989. He has studied and taught in Strasbourg, Boston, and Santa Cruz, and 
is currently professor of structural biology at Stanford University. His research interests 
are in the structure and mechanism of the ribosome and the use of NMR spectroscopy to 
study RNA structure. He has been a Dreyfus Scholar, Sloan Scholar, and Packard Fellow. 

 Gerard Harbison was born in the United Kingdom and raised there and in Ireland. He 
received his B.A. in biochemistry from Trinity College, Dublin, and his Ph.D. in biophysics 
from Harvard University. After a brief postdoctoral sojourn at the Max-Planck Institute for 
Polymer Research in Mainz, Germany, he joined the faculty of Stony Brook University, and 
then moved to the University of Nebraska Lincoln. He is a Dreyfus Teacher-Scholar, Lilly 
Foundation Teacher-Scholar and Presidential Young Investigator. His research interests 
are in nuclear magnetic resonance and electronic structure theory. 

 David Rovnyak, a native of Charlottesville, Virginia, earned his B.S. in Chemistry at the 
University of Richmond and Ph.D. in physical chemistry from the Massachusetts Institute 
of Technology. After performing post-doctoral study at the Harvard Medical School under 
an NIH-NRSA fellowship, he joined Bucknell University where he has been recognized 
with the Bucknell Presidential Teaching Award for Excellence. His research focuses on new 
methods for NMR spectroscopy and physico-chemical behavior of bile acids.                  



    Chapter 1 

 Introduction 

    Physical chemistry is everywhere. Physical chemical principles are basic to the  methods 
used to determine the sequence of the human genome, obtain atomic resolution structures 
of proteins and nucleic acids, and learn how biochemicals react and interact to make a cell 
function. Once you learn physical chemistry, you will subconsciously apply your knowl-
edge to each scientific paper you read and to each explanation of an experiment you hear 
or propose yourself. “What provides the energy for the reaction? What about the Second 
Law? The proposed mechanism seems to violate microscopic reversibility. An intermediate 
is proposed; I can identify it by fluorescence, or nuclear magnetic resonance (NMR), or 
Raman scattering.” Most importantly, you will realize that to study any biological process 
you need to use the methods of physical chemistry. Understanding how the brain works has 
become among the most active areas of biological research. The neurons in the brain com-
municate with each other by electrical signals and the transfer of neurotransmitters. The 
structures of all the players (neurotransmitters, neurotransporters, receptors, ion channels, 
synapsis proteins, and so forth) need to be determined by X-ray diffraction or by NMR. 
These molecules move, change conformation, and interact with other molecules in response 
to action potentials. Their positions, interactions, rates of motion, shapes, and sizes are 
measured by high resolution optical microscopy, atomic force microscopy, or electron 
microscopy. Functional magnetic resonance imaging, and infrared absorption and scatter-
ing reveal which parts of the brain are most active while you are thinking about whatever 
you are doing. In the next fifty years new methods and new applications of old methods will 
reveal new answers and completely new questions to ask about every biological process. 

 Physical chemistry is a set of principles and experimental methods for exploring 
chemical and biological systems. The power of physical chemistry lies in its generality. 
The principles described in this book can be applied to systems as large as the cosmos 
and as small as an individual atom. Physical chemistry has been especially powerful in 
understanding fundamental biological processes.  In the following chapters, we will present 
the principles of thermodynamics, transport properties, kinetics, quantum mechanics and 
molecular interactions, spectroscopy, and scattering and diffraction. We will also discuss 
various experimentally measurable properties such as enthalpy, electrophoretic mobility, 
light absorption, and X-ray diffraction. All these experimental and theoretical methods give 
useful information about whatever problem you want to solve. We emphasize the molecular 
interpretation of these methods and stress biochemical and biological applications. By learn-
ing the principles behind the methods, you will be able to judge the conclusions obtained 
from them. This is the first step in inventing new methods or discovering new concepts.

    First, a quick tour of the book.  Chapters   2    through    4    cover the fundamentals of 
 thermodynamics and their applications to chemical reactions and physical processes. 
Because these chapters review material usually covered in beginning chemistry courses, 
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we  emphasize the applications to biological macromolecules.  Chapter   5    covers the statisti-
cal basis of thermodynamics; it provides a molecular interpretation of thermodynamics. 
 Cooperative binding of ligands to macromolecules, plus helix-coil transitions in nucleic 
acids and proteins are described.  Chapter   6    covers physical equilibria, including osmotic 
pressure, equilibrium dialysis, and membrane equilibria.  Chapter   7    deals with electro-
chemistry, including Galvanic cells, Donnan equilibria, and transmembrane potentials. 
The effect of sizes and shapes of molecules on their translational and rotational motions 
in gases,  liquids, and gels are discussed in  chapter   8   . The driving forces for molecular 
motion are either random thermal forces that cause diffusion or the directed forces in sedi-
mentation, flow, and electrophoresis.  Chapter   9    describes general kinetics, and   chapter   10    
concentrates on the kinetics of enzyme-catalyzed reactions.  Chapter   11    introduces the 
quantum mechanical principles necessary for understanding bonding and spectroscopy, 
and   chapter    12    describes calculations of protein and nucleic acid conformations using 
classical force fields ( Coulomb’s Law, van der Waals’ potential).  Chapter   13    includes the 
main spectroscopic methods used for studying molecules in solution: ultraviolet, visible, 
and  infrared absorption; fluorescence emission; circular dichroism; and optical rotatory 
dispersion.  Chapter   14    is devoted to nuclear magnetic resonance (NMR); it discusses the 
fundamentals of the method for determining structures of proteins and nucleic acids. 
 Chapter   15    starts with the scattering of electromagnetic radiation from one electron and 
proceeds through the  diffraction of X-rays by crystals. Scanning microscope methods are 
introduced. The appendix contains numerical data used throughout the book, unit conver-
sion tables, and the structures of many of the biological molecules mentioned in the text.  

 We encourage you to consult other books for background information and greater depth 
of coverage. Standard physical chemistry texts offer applications of physical  chemistry to 
other areas. Biochemistry and molecular biology texts can provide specific information 
about such areas as protein and nucleic acid structures, enzyme mechanisms, and meta-
bolic pathways. Finally, a good physics textbook is useful for learning or reviewing the 
fundamentals of forces, charges, electromagnetic fields, and energy. A list of such books 
is given at the end of this chapter. 

 In the following sections, we highlight several important biological problems that 
physical chemistry can address. These examples are meant to give you an overview of 
how physical chemistry is applied in the biological sciences. Read them for pleasure, with-
out trying to memorize them. Our aim is simply to illustrate some current research from 
the scientific literature and to point out the principles and methods that are used.  We hope 
to motivate you to learn the material discussed in the following chapters.  Many articles in 
journals such as  Nature  or  Science  apply the methods and concepts described in this book. 
Read such articles to learn how the book will improve your understanding. 

  Neuroscience 
 Eric Kandel, a winner of the 2000 Nobel Prize in Physiology or Medicine, states that 
the last frontier of the biological sciences is to understand consciousness and the mental 
 processes by which we experience our surroundings. An adult human brain has about 
80 billion neurons, and each is connected to about 10,000 other neurons. The interactions 
and communication among the neurons is who we are. How this all works is left as an 
exercise to the reader because nobody else has explained it yet. However, in this book you 
will learn some of the ideas and methods that have been used up to now to begin to find 
answers, and more importantly, you may learn how to discover the next ‘last frontier’. 

 Magnetic resonance imaging (MRI) uses nuclear magnetic resonance in the  presence 
of a magnetic field gradient (the strength of the magnetic field varies with position) to 
 produce an image. The resonance frequency of a nucleus, such as a proton in water, 
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depends on the magnetic field strength and thus on its position in the sample. Therefore, 
the intensity at each frequency provides the distribution of water in the sample. For humans 
the image is analogous to an X-ray picture, but it is much more sensitive to soft tissue. A 
special application of MRI called functional MRI (fMRI) is used to learn which areas of 
the brain are most active when you see, hear, feel, smell, or think about different things. 
Brain activity uses more oxygen than usual, which means more blood flow and a higher 
concentration of oxyhemoglobin from the lungs. This produces a signal that is different 
from the slower blood flow with more deoxygenated hemoglobin in the rest of the brain. 
An fMRI image of a brain of a person listening to music will show activity in a region 
different from that of a person looking at a picture. These types of images are beginning 
to teach us which parts of the brain are involved in specific inputs, thoughts, and outputs. 

 The molecular basis of brain activity depends on the electrical and chemical interac-
tion among the neurons. Neurons are specialized cells with a cell body containing the 
nucleus with its DNA, an axon that is much longer than the body, and many dendrites for 
communicating to other neurons. The communication between neurons is done at syn-
apses, where the cells touch. Ion channels open, neurotransmitters are released by one cell 
and absorbed by the other, and somehow an image is seen, a thought is formed, an idea 
occurs. Reading this paragraph should trigger hundreds of questions in your mind. I can 
answer nearly all of them: “Nobody knows”. The obvious questions include: What are the 
structures of all the proteins, nucleic acids, and small molecules involved? How do these 
molecules get to their sites of action, and how fast do they do it? What are the interactions 
that trigger and control all the effects? Finally, how do these molecular effects lead us to 
think, to remember, to dream?  

  The Human Genome and Beyond 
 The instructions for making all the molecules that occur in the brain and all the other 
organs in your body are stored in sequences of base pairs in your DNA. The structure of 
DNA, determined by X-ray diffraction to be two interwound strands, started the molecular 
understanding of how genes were stored and replicated ( Watson and Crick, 1953 ). The 
tenth anniversary of the  Human Genome Project  was celebrated in 2011; it had determined 
the sequence of a human genome of 3 billion    13 * 1092    base pairs (see   Science , 2011  
and  Lander, 2011 ). Genes are sequences of base pairs in double-stranded DNA. In human 
sperm the DNA is packaged in 23 chromosomes: 22 autosomes plus a male Y chromosome 
or a female X chromosome. In human eggs the DNA is packaged in 22 autosomes plus a 
female X chromosome. Thus, each of us acquires 23 pairs of chromosomes; the XX pair 
makes us female, the XY male. When the human genome project started it was thought 
that about 100,000 genes coded human proteins. Now the number is estimated to be 20,000 
to 25,000, not very different from fruit files. So what is going on? Most of us think we are 
smarter than a fruit fly. 

 A DNA sequence of base pairs does not directly code for a sequence of amino acids 
in a protein; it codes for a sequence of bases in RNA. Some of the RNAs are part of the 
translation machinery that produces proteins (ribosomal RNAs, transfer RNAs), and some 
are messenger RNAs that are translated into a sequence of protein amino acids. However, 
the messenger RNAs in humans are often modified before they are translated; pieces called 
introns are removed and the remaining exons are spliced together before the messenger 
RNA is translated. Alternative splicing can thus produce more than one protein from one 
DNA sequence—one gene. Furthermore, an increasing number of DNA sequences have 
been found to code for regulatory RNAs, not for proteins; they are RNA genes. These RNAs 
are not translated into proteins, but they control which proteins are made and when they are 
made. The 20,000 to 25,000 genes mentioned earlier are   protein-coding  genes; there may 
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be an equal or larger number of  RNA-coding  genes that help define you.  Interactions not 
yet discovered will eventually explain some of the differences between you and a fruit fly. 
The Human Genome Project is thus typical of nearly all scientific projects. The completion 
of one project reveals many new projects to investigate. 

 Determining the precise sequence of 3 billion nucleotides is a heroic task, which has 
been made possible by the application of many biophysical techniques to separate and 
characterize molecules. We emphasize the human genome, but the genomes of all kinds of 
organisms from bacteria to plants to extinct animals are being sequenced, and are reveal-
ing new insight into how organisms evolve, differentiate, and exist. The key method used 
to determine DNA sequence is to measure the fluorescence of fluorescently-labeled DNA 
bases. A different fluorophore is added to each of the four bases in DNA; this allows the 
sequence to be read using automated equipment. A newer method of sequencing uses an 
electric field to pull a single-stranded DNA (or RNA) through a narrow pore in a membrane 
( Pennisi, 2012 ). The four bases are different sizes and decrease the current passing through 
the pore by different amounts. A trace of current vs. time as the nucleic acid strand passes 
through the pore provides the sequence. The speed of sequencing has increased and the 
cost has decreased so much that soon we can all be sequenced routinely at birth. Also, 
DNA sequences have been placed on silicon chips and glass slides. Using the principles 
of Watson–Crick base pairing, scientists can rapidly identify changes in DNA sequences. 
These “genes on a chip” are revolutionizing the way that genes and gene expression are 
analyzed. Many times in science, fundamental advances are allowed by improvements in 
instrumentation to measure physical properties. 

 Once the sequence of an organism’s genome has been determined, a difficult task 
begins. What does the string of the four different letters of the DNA alphabet (A, C, G, T) 
mean? The DNA sequence is first transcribed into the RNA alphabet (A, C, G, U). A 
messenger RNA is then translated into a protein sequence of 20 amino acids in a three-
letter code.  *   As there are    43    (64) three-letter words with an alphabet of four letters, the 
code must be redundant. In the genetic dictionary, most amino acids are coded by two 
or four different words. Three amino acids have six words each (arginine, leucine, and 
serine), and two have only one word (tryptophan, methionine). Three of the words do 
not code for amino acids but instead signal for protein synthesis to stop: UAA, UAG, 
UGA. One word, AUG, codes for the start of protein synthesis (it also codes for methio-
nine). Sequences before the starting AUG and after the terminating UAA, UAG, or 
UGA  control and regulate the synthesis of the protein. Using the known genetic code, 
scientists can predict the sequence for a protein that is coded by a given gene. What does 
this protein do? What does it look like?      

 Physical chemistry provides the principles that allow bioinformatics scientists to make 
sense of the vast DNA sequence data of a genome. The protein sequence predicted from 
a gene is first compared to known protein sequences. If the protein is an essential part of 
some biochemical process that is common to many or all organisms, related proteins have 
likely been studied. Computer sequence comparisons establish the relationship between 
a novel protein and known proteins. The sequences of two proteins of similar biological 
function from different organisms are almost never identical. However, different protein 
sequences can adopt similar three-dimensional structures to perform similar functions. 
Different amino acids can have similar physical properties. For example, both isoleucine 
and valine have greasy aliphatic side chains and can often be exchanged for each other in a 
protein with little effect on its activity. Likewise, negatively charged amino acids (aspartic 

*The structures and names of the nucleic acid bases and the protein amino acids are given in  table   A.9    in the 
 appendix.
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acid or glutamic acid) can often be swapped, and so on. Using this type of logic, computer 
programs can sometimes predict the function of the unknown gene by its  relation to a 
known protein. 

 The weakness of this approach is obvious. You require the sequence of a known  protein 
with which to compare the new gene. In addition, what truly determines the function of 
a protein is not the sequence of amino acids but rather how these amino acids fold into a 
three-dimensional structure that can perform a specific function—for example, catalysis 
of a reaction. Biophysical chemists can determine the three-dimensional structures of 
biological macromolecules, using methods described in this book. Unfortunately, the rate 
at which structures can be determined lags behind that of sequencing a gene. Nonetheless, 
comparisons of protein structures often reveal similarities that simple protein-sequence 
comparisons miss. Triosephosphate isomerase is a protein involved in metabolism, and it 
has a barrel-like three-dimensional structure. This structure is a rather common motif in 
proteins, but sequence comparisons by computer can rarely identify its presence. 

 Determining the three-dimensional structure of a protein would be easy if it could 
be predicted from its sequence. A protein’s amino acid sequence contains the physical 
characteristics that determine the most stable three-dimensional fold. Biophysical chemists 
have shown that proteins almost always adopt the most stable three-dimensional structure 
as determined by the principles of thermodynamics. Thus, physical chemistry provides 
the framework to predict protein structure. However, predicting the most stable three-
dimensional structure of a protein is a very difficult task because a large number of  relatively 
weak interactions stabilize its structure  ( chapter   12   ) . Precise treatment of these interactions 
is impossible, so biophysicists and computation biologists use a number of approximations 
to calculate a protein structure from its sequence (for an example, see  Das & Baker, 2008 ). 
This is a valid approach to many complex biological problems. How can a scientist know 
whether a computer program is actually working? Well, she could try it on a sequence of 
a protein of known structure. But this is of course biased, for our scientist already knows 
the answer. Scientists in this field in fact resort to friendly competitions. They are asked 
to predict the structures of proteins whose structures are not known at the beginning of 
the competition but will be revealed by the end. This provides an unbiased test of various 
algorithms. This example shows a glimpse of the human side of the scientific process. 
Although current algorithms cannot predict the structures of protein to the same precision 
as experimental methods, they are improving. Computer prediction of protein folding and 
RNA folding is now a highly active area of biophysical research. 

 In addition to predicting structure and function of a protein from the sequence, you can 
try to improve the function. For example, will the catalytic activity increase or the specific-
ity change if a crucial aspartic acid is changed to a glutamic acid? Changing one amino 
acid at a time is slow and tedious; but instead, by randomly changing the RNA sequence 
that codes for the protein, many mutants of the protein can be made. A selection process is 
then used to find the one with the desired optimized function. Furthermore, in producing 
better functions, or new functions, you need not be limited to naturally-occurring amino 
acids. The translation machinery can be tricked into producing proteins containing amino 
acids not found in nature (see  Brustad and Arnold, 2011 ).  

  Transcription and Translation 
 Genetic information must be faithfully transmitted from DNA to messenger RNA to 
 protein. Copying DNA to RNA is called  transcription;  reading RNA to produce a protein 
is called  translation.  Two central macromolecular machines are responsible for these pro-
cesses: RNA polymerases transcribe RNA from DNA, and the ribosome translates RNA 
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into protein. In both systems a series of repetitive tasks must be performed with high 
fidelity. These machines must be directional, because they copy information in only one 
direction. The machines are  processive , in that once they start the process of  transcription 
or  translation, they continue through hundreds or even thousands of steps of the process. 
Finally, these biological processes are highly regulated. Associated factors determine 
when, where, and how rapidly these processes begin and end. Physical methods have 
 provided important insights into how transcription and translation occur. 

 The process of transcription was first investigated in simple organisms such as  bacteria. 
The protein that catalyzes transcription consists of only one or a few polypeptide chains. In 
contrast, in eukaryotic organisms such as humans, the RNA polymerase enzyme consists of 
ten or more polypeptide chains, reflecting the higher degree of regulation in higher organ-
isms. Transcription begins at specific signals in the DNA called  promoters.  These DNA 
sequences bind specific  transcription factors  that enhance or prevent transcription. This is 
an essential feature in the regulation of gene expression. The activity of these transcription 
factors can be affected by attaching a phosphate group to a protein or by binding of a small 
molecule cofactor. The classic example is a protein that binds both to small sugars and to 
DNA, like the lac repressor ( Bell and Lewis 2001 ). These  DNA-binding proteins  recognize 
specific promoter sequences, which control the expression of genes for sugar metabolism 
enzymes. When the lactose concentration reaches a certain level, the sugar binds to specific 
sites on the protein and changes its conformation, such that it binds tighter to its DNA site, 
thus turning off transcription of genes that would produce more sugars. This is an example 
of  feedback inhibition.  This example of biological regulation can be explained by the laws 
of chemical equilibrium and thermodynamics , discussed in  chapters   2    through    5    . 

 The high fidelity of transcription is ensured by an elegant kinetic mechanism, deter-
mined using the methods of enzyme kinetics  described in  chapter   10    . During a round 
of polymerization, a nucleoside triphosphate enters the active site of RNA polymerase 
and pairs with the single-stranded DNA, which has been opened from its double helical 
form ( figure   1.1   ). The three-dimensional structure of this essential enzyme from bacteria 
( E. coli , see  Opalka et al., 2010 )   and higher organisms (yeast, see  Cramer et al., 2000 ) has 
been solved. The shape of the active site is such that only the correct Watson–Crick base 

 FIGURE 1.1         Three-dimensional 
structure of the RNA  polymerase 
from  E. coli , the enzyme respon-
sible for transcribing the RNAs. 
The enzyme breaks base pairs 
in the double-stranded DNA (in 
black) to produce an open loop. 
The new RNA strand (in blue) 
is synthesized complementary 
to one of the DNA strands in 
the loop. This structure is a 
 combination of X-ray diffraction 
and  cryo-electron-microscopy 
data plus computer  modeling 
 ( Opalka et al., 20 10). The 
 coordinates were obtained from 
the Protein Data Base. (Courtesy 
of Troy Lionberger, University of 
California Berkeley.)   
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pair is tolerated; the wrong nucleoside triphosphate does not make a good fit into the active 
site and is more rapidly ejected. For DNA polymerase, the enzyme that copies DNA during 
cell division, the push for fidelity is so strong that the enzyme contains an editing  function. 
If a wrong nucleotide is incorporated into the DNA, it is snipped out, and the correct 
nucleotide is incorporated. This drive for fidelity is understandable, considering the drastic 
effects mutations can have on protein function. On the other hand, the polymerases have to 
perform their functions rapidly, so they have evolved a trade-off between high fidelity and 
reasonable rates of polymerization. Such trade-offs are a hallmark of biological chemistry.  

 The regulation of transcription is a central process in biology; the requirement for 
a complex macromolecular assembly to perform RNA transcription in higher organisms 
derives from the need for regulation. Cells must sense outside stimuli and respond, usually 
by rapidly synthesizing or degrading a protein or proteins. Recent biochemical experiments 
have revealed elaborate  signal transduction pathways.  A protein on the surface of a cell, 
called a  receptor,  will bind to an external signal, which may be a specific hormone or 
another extracellular-signaling molecule. The receptor molecule spans the cell membrane, 
and the binding of the hormone causes a change in its three-dimensional structure, acti-
vating an enzymatic activity (a  kinase ) that adds a phosphate group to a protein. When a 
phosphate group modifies a protein, the protein’s shape and activity can change. Often, a 
cascade of kinase events occurs, where protein 1 phosphorylates protein 2, which, in turn, 
phosphorylates protein 3, and so on. The final targets of these cascades are often transcrip-
tion factors which can turn transcription on or off depending on the desired result of a 
signaling event. Certain human cancers occur when these signaling pathways—and thus 
the ability of a cell to respond to external stimulus—are disrupted. Signaling pathways 
are very complex and biologists are still identifying their many components. Physical 
methods and reasoning, however, will be required to unravel the mechanisms of these 
signaling pathways.  

 The  ribosome  ( figure   1.2   ), where translation occurs, is more complex than RNA poly-
merases. The ribosome in bacteria consists of two subunits which weigh    0.80 * 106    and 
   1.4 * 106    daltons. These enormous subunits each consist of at least one RNA chain and 
20 to 30  proteins. The adaptors between the genetic code of RNA and the protein amino 
acid, first proposed by Crick, are called  transfer RNAs  (tRNAs). A single loop of the tRNA 
contains three nucleotides—the  anticodon —that can form Watson–Crick base pairs with 
a given codon; the amino acid that corresponds to that codon is attached at the 3�-end of 
the tRNA. The three-dimensional structure of tRNA shows that these two parts are located 
7.5 nm apart. The ribosome is able to select the correct tRNA that binds to the appropriate 
codon. The messenger RNA (mRNA) runs through a cleft between the subunits, and the 
anticodon portion of the tRNA interacts with the smaller (30S) subunit. Once the  correct 
tRNA is selected at the A-site, the 3�-end of the tRNA sits within the larger subunit, 
where peptide bond formation is catalyzed between the amino acid and a peptide-chain 
containing tRNA (which is bound at the adjacent codon at the P-site). The ribosome then 
must move by three nucleotides in the mRNA to the next codon; this precise directional 
movement is called  translocation.  

 The basic mechanism of translation was delineated over 40 years ago, but molecular 
details of how the ribosome performs the task of protein synthesis have been revealed only 
recently (reviewed in  Schmeing and Ramakrishnan, 2009 , and  Moore, 2012 ). The struc-
ture of the ribosome ( Ban et al., 2000 ;  Schuwirth et al., 2005 ) showed that the biological 
 functions of the ribosome are dominated by the RNA components; RNA catalyzes the 
formation of the peptide bond, making it an RNA enzyme—a ribozyme. Kinetic studies, 
 similar to those done on polymerase enzymes, have revealed the origins of  translational 
fidelity. The strategy used by the ribosome is somewhat similar to that used by  polymerases. 
In the case of the ribosome, the base pairing between codon and anticodon occurs about 
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7.5 nm from the site of peptide bond formation; the ribosome couples this base pairing to 
another chemical reaction: hydrolysis of guanosine triphosphate, GTP, which is bound to a 
protein factor that escorts the tRNA to the ribosome. Rate constants for tRNA dissociation 
and ribosomal conformational changes are modulated by whether the correct or the incor-
rect tRNA is present. Structural biologists have obtained detailed views of the ribosomal 
particles. The two subunits of the ribosome interact through an interface that is entirely 
RNA. Adjustments of this interface allow the ribosome to translocate down the mRNA. As 
biochemical experiments have predicted, the structures show that RNA forms the critical 

 

FIGURE 1.2             (top) The 
 architecture of the ribosome; 
the large, 50S, subunit is on top 
and the small, 30S, subunit is 
on the bottom. Three transfer 
RNAs are shown reading the 
 sequence in the messenger 
RNA. The structure was solved 
by X-ray crystallographic 
methods ( Zhang et al., 2009 ). 
(bottom) A close-up view of 
the Watson-Crick base  pairing 
 between each codon on the 
messenger RNA with the 
 anticodon of each  transfer RNA 
as it occurs on the amino acid 
site (A-site), peptide site (P-site), 
and exit site (E-site) of the ribo-
some. The  coordinates are from 
the Protein Data Base. (Courtesy 
of Shannon Yan, University of 
California Berkeley.)   
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active sites for tRNA binding and peptidyl transfer. The RNA folds into a  complex three-
dimensional structure, which the protein components of the ribosome (many of which 
bind to ribosomal RNA) stabilize. The molecular rationale for how the ribosome performs 
translation will only be revealed by physical chemical investigations.  

  Ion Channels 
 Cells perform spectacular feats of chemistry.  Ion channels  are proteins that span the lipid 
membrane of a cell and specifically allow one ion type to traverse the channel. Ion channels 
are critical for many biological processes, including signaling by neurons. Ion channels 
can be remarkably selective. Potassium ion    1K+2    channels are about 10,000-fold more 
selective for    K+    than for    Na+    (sodium) even though their ionic radii are 1.33 and 0.95 Å, 
respectively. Also, the ion channels must allow a large number of ions to pass across a 
membrane in a directional manner in a short time period. Finally, many ion channels are 
controlled by external conditions. They are opened or closed to ion passage by factors 
such as the voltage difference across the membrane. The methods of physical chemistry 
have been invaluable in determining how ion channels work ( Doyle et al. 1998 ). When ion 
channels do not function properly, the results can be disastrous. Many human diseases are 
linked to impairment in these molecular highways. For example, cystic fibrosis, one of 
the most common genetic diseases, is caused by mutations in a    Cl-    (chloride ion) channel. 
The disrupted function for this channel leads to a buildup of thick, fibrous mucus in the 
lungs, which impairs breathing.  

 Determining the three-dimensional structure of a    K+    channel to atomic resolution 
was a significant breakthrough in understanding how ion channels work. The protein is a 
tetramer of identical subunits. Long rods of alpha helix span the membrane. The protein 
is not merely a tube through which potassium flows. The overall shape of the protein is 
like a flower, with the petals opening toward the outside of the membrane and narrowing 
at the inside of the membrane ( figure   1.3   ). The ions pass through a channel in the center 
of the tetrameric protein. How are potassium ions specifically selected and transported? 

cell exterior

cell interior

 FIGURE 1.3         The three-
dimensional structure of a 
K+       channel, showing schemati-
cally the  position of the channel 
within a cellular membrane. 
Intracellular (in the cell interior) 
and intercellular (on the cell 
surface) domains are indicated. 
Potassium ions are shown as 
spheres and are transported 
directionally from the  exterior 
to the interior of the cell. 
(By  permission of Roderick 
Mackinnon, MD; Professor, 
The  Rockefeller University; 
 Investigator, Howard Hughes 
Medical Institute.)   




